ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINEERING & SCIENCE ADVANCED MATERIALS AND NANOTECHNOLOGY ENGINEERING PROGRAM COURSE DESCRIPTION AND SYLLABUS Course Title Code Semester T+L Hours Credit ECTS Advanced Topics in Enzyme Science and Technology AMN-517 FALLSPRING 3 + 0 3 7,5

Prerequisite Courses	-

Туре	Selective				
Language	English				
Coordinator	Assist. Prof. Kevser Kahraman				
Instructor	Assist. Prof. Kevser Kahraman				
Adjunt	none The aim of the course is to give an advanced knowledge about the fundamental properties enzymes, their production technology, isolation, purification, immobilization, stabilization, ar technical use of enzymes in materials science and nanotechnology and the possibilities to change and improve enzyme performance for adaptation to technical applications.				
Aim					
Learning Outcomes	 Explain the basis, effect and function of enzymes. Obtain basic knowledge about the relationship between properties and structure of the enzymes, their mechanism of action and kinetics of enzymatic reactions. Learn the regulatory mechanisms of enzyme activity, enzyme inducers, biosensors and immobilized systems. Learn the usage of enzymes in medicine, food, organic synthesis, genetics and other areas sectors. 				
Course Content	 Introduction to enzyme technology Fundamentals of enzyme kinetics Enzyme Inhibition Enzyme preparation techniques The preparation and kinetics of immobilized enzymes The large-scale use of enzymes in solution Safety and regulatory aspects of enzyme use Immobilized enzymes and their uses Biosensors Recent advances in enzyme technology Future prospects for enzyme technology 				

WEEKLY	Week Topic Preliminary Study						
week	Topic	Preliminary Study					
1	Introduction to enzyme technology	The relevant articles from the literature					
2	Fundamentals of enzyme kinetics	The relevant articles from the literature					
3	Enzyme Inhibition	The relevant articles from the literature					
4	Enzyme preparation techniques I	The relevant articles from the literature					
5	Enzyme preparation techniques II	The relevant articles from the literature					
6	The preparation and kinetics of immobilized enzymes	The relevant articles from the literature					
7	Midterm						
8	Immobilized enzymes and their uses	The relevant articles from the literature					
9	The large-scale use of enzymes in solution I	The relevant articles from the literature					
10	The large-scale use of enzymes in solution II	The relevant articles from the literature					
11	Safety and regulatory aspects of enzyme use	The relevant articles from the literature					
12	Biosensors	The relevant articles from the literature					
13	Recent advances in enzyme technology	The relevant articles from the literature					
14	Future prospects for enzyme technology	The relevant articles from the literature					

SOURCES						
Lecture Notes Lecture slides						
Other Sources	Course Textbook: "Enzyme Technology", Martin Chaplin and Christopher Bucke, Cambridge University Press, 1990 "Fundamentals of Enzymology", Nicholas Price and Lewis Stevens, Oxford University Press, 1999					

COURSE MATERIALS SHARING					
Documents	Lecture notes and slides				
Homeworks	There will be 6 homeworks in a semester				
Exams	1 Midterm and 1 Final Exam				

EVALUATION SYSTEM						
SEMESTER STUDY	NUMBER	CONTRIBUTION				
Midterm	1	20				
Homework	6	25				
Quiz	8	25				
SUB-TOTAL		70				
Contribution of Semester Study		70				
Contribution of Final Exam	1	30				
TOTAL		100				

Course Category				
Sciences and Mathematics	50%			
Engineering	50%			
Social Sciences	0%			

RE	RELATIONSHIPS BETWEEN LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS							
N	I. D O differential	Contribution Level						
INO	Program Qualifications		2	3	4	5		
1	Accessing knowledge, evaluating and interpreting information by doing scientific research in the field of Advanced Materials and Nanotechnology Engineering					x		
2	Ability to use science and engineering knowledge for development of new methods in Advanced Materials and Nanotechnology Engineering					X		
3	To be able to understand and analyze materials by using basic knowledge on Advanced Materials and Nanotechnology Engineering					x		
4	Design and implement analytical, modeling and experimental research					X		
5	Solve and interpret the problems encountered in experimental research					x		
6	Considering scientific and ethical values during the collection and interpretation of data				X			
7	Integrating knowledge of different disciplines with the help of scientific methods, and completion and implementation of scientific knowledge using data				x			
8	To gain leadership ability and responsibility in disciplinary and interdisciplinary team works					x		
9	To be able to contribute to the solution of social, scientific and ethical problems encountered in the field of Advanced Materials and Nanotechnology Engineering					x		
10	To be able to define, interpret and create new information about the interactions between various discipline of Advanced Materials and Nanotechnology Engineering					X		

^{*}Increasing from 1 to 5.

ECTS / WORK LOAD TABLE						
Activities	Number	Duration (Hours)	Total Work Load			
Course Length (includes exam weeks: 14x total course hours)	14	3	42			
Out-of-class Study Time (Pre-study, practice)	14	5	70			
Internet search, library work, literature search	14	5	70			
Presentation	7	3	21			
Homework	14	5	70			
Midterm	1	15	15			
Final Exam	1	20	20			
Total Work Load			308			
Total Work Load / 30			308/30			
Course ECTS Credit			7,5			